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Riemannian manifolds are but one of three ways to extrapolate from four- 
dimensional Minkowskian manifolds to spaces of higher dimension, and not the 
most plausible. If we take seriously a certain construction of time space from 
spinors, and replace the underlying binary spinors by N-ary hyperspinors with 
new "internal" components besides the usual two "external" ones, this leads to 
a second line, the hyperspin manifolds aN and their tangent spaces d~N, 
different in structure and symmetry group from the Riemannian line, except that 
the binary spaces d @2 (Minkowski time space) and ~2 (Minkowskian manifold) 
lie on both. d a n  and ~N have dimension n = N 2. In hyperspin manifolds the 
energies of modes of motion multiply instead of adding their squares, and the 
N-ary chronometric form is not quadratic, but N-ic, with determinantal normal 
form. For the nine-dimensional ternary hyperspin manifold, we construct the 
trino, trine-Gordon, and trirac equations and their mass spectra in fiat time 
space. It is possible that our four-dimensional time space sits in a hyperspin 
manifold rather than in a Kaluza-Klein Riemannian manifold. If so, then gauge 
quanta with spin-3 exist. 

1. I N T R O D U C T I O N  

1. Premises.  Since the work  o f  Kaluza  it has come to be widely  surmised 

that  o rd inary  t ime space is imbedded  in a higher  d imens iona l  space popu-  

larly cal led hyperspace ,  and that  all the interact ions  in nature are manifes-  

tat ions o f  hyperspace  curvature,  the curvature  being that  o f  ord inary  t ime 

space for  gravity and o f  other  d imens ions  for  o ther  forces. These other  

d imens ions  p robab ly  have microscopic  quan tu m  extent  rather  than  macro-  

scopic  extent ,  and are therefore  general ly  cal led internal; then the ord inary  

ones are external. Just  as there are at least implici t  and heuris t ic  quant iza t ion  

rules that  assist us in bu i ld ing  quan tum theories  f rom classical ones, there 
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are similar imbedding strategies for building internal space out of external, 
such as the following: 

2. Riemannian strategy. Add new internal components to the ordinary 
external ones of time space vectors (and differentials), preserving the general 
Riemannian structure of differential geometry. 

The theories and concepts resulting from such an imbedding we also 
call Riemannian, although, of course, Riemann thought in definite 
Euclidean forms, while the Minkowski quadratic form needed for physics 
is indefinite. The Riemannian strategy, with many variations, is the one that 
has long been followed to higher dimensional geometries, such as the 
Kaluza-Klein five-dimensional theory of electromagnetism and De Witt's 
(1964) (4 + n)-dimensional theories of higher gauge fields. The Riemannian 
strategy, however, conflicts with a principle put forward long ago by 
v. Weizs/icker (1955) and Penrose (1970), among others: 

3. Spinor principle. The fundamental entities of nature are not time 
space vectors or differentials, but are described by spinors. 

Spinors stand out because they support the fundamental representation 
of the Lorentz group, because of their quantum significance, and because 
their metrical geometry, being purely affine, based purely on a relative 
volume element, does not reduce the affine symmetry of the linear space 
of spinors. The only spinor structure that is necessary for the construction 
of time space is their Grassmann algebra. When vectors instead of spinors 
are taken as basic, they must be given "from outside" an indefinite quadratic 
form, the proper time; when vectors are composed of spinors, however, 
their quadratic form is determined by their composition. 

From this conflict of principles emerges the following: 

4. Spinor strategy. Add new internal components to the two external 
one of time space spinors, preserving the general algebraic structure of the 
differential geometry. 

If spin is prior to space, then hyperspin is prior to hyperspace. Binary 
spinors generate the Minkowskian time space manifold, which we now call 
binary. We compute the time space generated by a spinor of N components, 
a hyperspinor. The result is a new N-ary spin, or hyperspin, manifold, in 
which the binary is naturally imbedded. 

The spin manifolds now form an infinite sequence of higher- 
dimensional geometries ~N-- -~n= ~N 2 (exponents give the dimension n 
of the space; subscripts give the dimension N of the fundamental spinors 
giving rise to the space) quite different in structure from the Riemannian 
manifolds ~R n, except for N = 2, where T2 is a Minkowskian ~R 4. 



Hyperspin Manifolds 443 

Riemannian geometries have real orthogonal groups O(n+, n_, R) for 
their local invariance groups, with various signatures, belonging to Cartan's 
B,, and Din, but the hyperspin manifold T" has the much smaller group 
GL(~nn, C) instead, belonging to Cartan's AN-a, and not to be confused 
with the group GL(n, R) of manifolds. 

Riemannian manifolds have a quadratic chronometric form. (We 
reserve the word "metric" for the quantum Hilbert space.) The N-ary spin 
manifold has an N-ic chronometric form. 

5. Paraspin and hyperspin. To reduce the possibility of misunderstand- 
ing, we distinguish between hyperspin and paraspin. We call a "paraspin" 
any spinlike degree of freedom, like isospin or color, that is not a spin at 
all, in that it does not act like the Lorentz group on time space elements. 
Hyperspin, however, extends and includes ordinary spin. One difference 
between paraspin and hyperspin is that between multiplying and adding a 
new space to the binary spinor space, between N1 ?42 and N1 + N2 spinorlike 
components. 

6. Ternary spinors and N-ary. Our first extension turns two-component 
spinors into three-component ones, not by multiplying degrees of freedom, 
since 3 does not contain 2 as a factor, nor through any Riemannian geometry, 
whose spinors have a dimension that is always a power of 2, but simply by 
adding one hyperspinor component. In the following we treat this extension 
most fully. It takes us from a four-dimensional quadratic chronometric to 
a nine-dimensional cubic one. The generalization from 3 to N is clear. 
Anything labeled binary in this paper is thus ordinary and part of the old 
world, the correspondence limit; anything labeled ternary represents a whole 
new world. 

This work is a by-product of a program in quantum topology that 
suggests that the case of large N is of physical importance, too. The first 
step in non-Euclidean geometry was to replace zero curvature by a different 
constant curvature; only later was it considered that the curvature might 
be a physical variable. Some presently propose a different constant 
dimension to take the place of 4; we consider dimension, too, as a physical 
variable, and are concerned with geometries of arbitrarily high dimension. 

7. Course of action. Carrying out the plan of paragraph 4, we first 
choose a definite binary path from the theory of 2-spinors (stage i) through 
the theory of flat time-space geometry (stage ii) and curved (stage iii) to 
Einstein's theory of gravity (stage iv), which is set in the manifold that is 
both a spin manifold and Riemannian (Section 2, especially paragraphs 
12-16). Then in Section 3 we replace all the 2-spinors along this path by 
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3-spinors (or N-spinors). The new path (paragraphs 18-25) then leads us 
to a hyperspin manifold, imbedding the binary spin manifold, and quite 
off the line of Riemannian geometries. In paragraph 26 we work out the 
simplest invariant wave equations of the ternary spin manifold. Section 4 
summarizes the results and possible alternate paths. 

8. Correspondence limit. We think of the components of our funda- 
mental spinors as quantum amplitudes. The work is guided by a still tentative 
correspondence principle that an effectively four-dimensional time space 
physics results when the extent e of the internal space goes to zero relative 
to the other independent lengths of the experiment, for it then takes too 
much energy [O(hc/e)] to excite components of momentum along the 
internal dimensions. Ordinary physical quantities therefore should not 
depend appreciably on the internal variables. As e -) 0, internal derivatives 
a/a~b3,.., should approach 0 relative to external ones a/a~b 1 and a/a~b 2. 

In practice, since we have only indirect evidence about what goes on 
in internal space, in each case we seek anew the conditions that must be 
imposed on the internal behavior to reproduce the binary external behavior. 
The existence of such a correspondence limit is assured by the spinor 
principle (paragraph 3) and the imbedding of 2-spinors in hyperspinors. 

9. Spinors and hyperspinors. In general we call a spinor space a complex 
linear N-space E N transforming under the group SL(N, C), consistent with 
the identification of two-component spinors of ~2~ EN as ordinary Weyl 
2-spinors, and of SL(2, C) c SL(N, C) as ordinary time space rotations and 
Lorentz transformations. That is, if N > 2, the ordinary Weyl 2-spinors must 
be identified with a subspace E 2 c E ~  Those N-ary spinors with N > 2 are 
hyperspinors. 

The spinors introduced here support the unimodular groups A1, A2 , . . . ,  
and may therefore be called unimodular spinors to distinguish them from 
the orthogonal spinors of Cartan, which support the orthogonal groups Bm 
and Din. It is somewhat bizarre to take orthogonal hyperspinors as more 
fundamental than hyperspace, for they have exponentially more numerous 
components than the vectors they define: N -- 0(2"/2). Unimodular spinors 
have much fewer components than their vectors: N = x/-ff = o (n). Symplectic 
spinors supporting the symplectic groups Cm appear briefly in paragraph 31. 

10. Polyspinor algebra. We designate the Grassmann algebra over any 
linear space L by CL}. If  ~b is an element of L, we designate the corresponding 
first-grade element of {L} by {0}. An index of {0} may be taken to be a 
set of indices of ~b arranged in numerical order. We designate a variable 
taking on such values by CA}, where A is an index variable of ~b. For 
example, if A = 1, 2 then CA} = { }, {1}, C2}, C12}. we  may drop the condition 
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that the values be in numerical order if we impose antisymmetry instead. 
Evidently {0} 2 = 0 regardless of the value of tp 2. Vectors in boldface 

braces anticommute. The basis element {e} O of {L} is generally called the 
vacuum (of  that basis); it is the unit of the Grassmann algebra, and is 
generally designated by 1. We therefore call the basis element of {L} that 
is the product of the braces of all the basis elements of L the plenum (of 
that basis), designating it by UIL ~ or simply U: 

U = { e , } . . .  {e~}, U 2=0  

When 1 represents the empty state, U represents the full state. In Grass- 
mann's interpretation, 1 represents the empty set and U represents the unit 
cell of the basis. In quantum set theory, 1 represents the empty set and U 
the universal set. 

Indices. Dual spaces and vectors of a dual basis carry the superscript 
D and prefix co-. Spinor indices are capital Greek letters. The indices of 
conjugate spinors are dotted: A = i, 2. Both A and 3, are independently 
variable index symbols unless otherwise stated. Time space indices are lower 
case Latin letters. Lower case Greek indices stand for a pair of  corresponding 
spinor indices, one dotted, as follows: 

a := AA, b := q)BB �9 ~a := q~AA, ~b '= q)BB, 

Polyspinors. We now have the following tensorial operations for assem- 
bling new linear spaces from old: the direct sum (+) and product (| 
conjugate (superscript C) and dual (superscript D); and { }. When we 
multiply algebras with | we postulate that the factors commute unless 
both are Grassmann algebras, when they anticommute. We call the iterates 
of these tensorial operations polytensorial. The linear spaces they generate 
from a given linear space L are the polytensors of L. From spinors they 
generate polyspinors; from vectors, polyvectors; from monadics, polyadics, 
including the usual dyadics as a highly special case. Polytensors are tensors 
with an additional hierarchic structure. 

Some polyvectors over L are invariant under a sign reversal in L, and 
called even, and some change sign and are called odd. We call this parity 
the linear (group) parity. Under a phase change h ~ e~~ of all h ~ L, a 
polyvector p over L that transforms into ei~176 is said to have linear (group) 
charge Q over L. The linear parity is the parity (evenness or oddness) of 
the linear charge. 

Polyforms. When a nonsingular bilinear form b = b(~0, ~b) is given both 
on L| and on the dual space LDQLD->c, there exists a useful 
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extension to all polytensors over L respecting the tensorial operations. If 
T ( A B C . . . )  and U ( A B C . . . )  are two polytensors with the same series of 
indices (each of which may be high or low, dotted or undotted), we define 

b(  T, U)  = b ( A A ' ) b ( B B ' ) b (  CC ' )  . . . T ( A B C .  . .) U ( A B C .  . . )  

where each b( . . . )  represents a bilinear form of the kind indicated by its 
indices; that is, the dual form b D if the indices are raised, conjugated if 
they are dotted. If T and U have different index structures, we set 

b( T, U)=0  

We call b(T ,  U)  the polyform induced by b on the polytensor T. 
N-linear forms induce similar polyforms. Suppose b(01, . . . ,  0N) is 

such a form on L |  and b D on (LD)~N~c. Then we define 
b ( T b . . . ,  TN) for any tensors T~,.. . ,  TN by 

b( T, ,  . . . , TN) = b ( A 1 .  . . A N ) b (  B ,  . . .BN)  

. . .  b(  C, . . . C N ) T ~ ( A B C .  . . )  . . . T N ( A B C . .  .) 

where each b ( A 1 . . .  AN)  represents an N-linear form of the kind indicated 
by its indices; that is, b is replaced by b D if the indices are raised, and 
conjugated if they are dotted. 

2. BINARY SPIN M A N I F O L D S  

11. One path from spin to gravity. The following stages i-iv are each 
familiar (see p. 212 of Penrose and Rindler (1984)), but we set them down 
in order to work on them. They happen to bypass torsion, which may well 
exist in nature; we take this path anyway for brevity. 

12. Stage i. Spinors. Start from the space E 2 (the boldface for 2 is 
explained in paragraph 17) of binary spinors 0 =  ( 0  A) = eAO A, A =  1, 2, 

isomorphic to the linear space C 2 of pairs of complex numbers, having 
fundamental symmetry group S L  = $ L ( 2 ,  C), typical basis elements CA, and 
special basis elements 

11=[101 =1' (read "up") 

12= [~] =$ (read"down") 

Form the complex Grassmann algebra {~2} over E 2. We designate the 
vacuum and plenum of {~z} by 1 and U2, respectively, with (U2) a= 0. 

Designate the grade of {~2} by F; F is the linear operator on {~2} with 
eigenvectors 1, {el}, {e2}, and /32, and corresponding eigenvalues 0, 1, 1, 
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and 2. In a quantum interpretation of spinors as creators, F is the number 
of things created, usually called the occupation number; in Grassmann's 
interpretation, F is the dimension of the element of extension. 

The Grassmann product {q~}{0} is a complex multiple of the plenum 
U for any spinors r t~. It may therefore be used to define a complex 
antisymmetric bilinear form ~(~, ~)=:  6 on X2| C, through 

{ ,~}{ ,}:  s(,r O) u 

This form is just the determinant of the two spinors involved. 8 is a scalar 
under the unimodular group. 

The polyform construction of paragraph 10 extends ~ to a polyform 
6(p, q) defined for polyspinors p and q of any polyspinor. We will call 
and its polyforms the binary forms. We define a binary norm Ilpll for any 
potyspinor p by 

Ilpll = ~(p,p) 
This norm is a generalization to multidimensional hypercubical matrices of 
the determinant of a two-dimensional square matrix. It vanishes by antisym- 
metry for odd polyspinors. 

13. Stage ii. The tangent time space. Form from X 2 the four-dimensional 
complex linear space A2 := E2 |  2c, the tensor product of the spinor space 
and its conjugate. We call this A2. The complex tangent spaces to time 
space, the fibers of the time space tangent-vector bundle, will be isomorphs 
of this space. Call its elements ambispinors. Writing them as 

t = (t AA) =: (t a) 

Under group elements A ~ SL(2, C), a spinor tp and ambispinor t transform 
according to 

~ ' =  A~, t ' =  AtA H 

A2 possesses a natural adjoint operation A: t ~ t  A that is defined to be the 
real-linear operator with (~p | ~bc) A = i f |  c .  Real time space tangent vectors 
are identified with self-adjoint elements of A2: 

tA=t  

Cones. Identify future timelike tangent vectors with positive-definite 
self-adjoint t = tA> 0, forming the future cone 5 ++. 

Except for boundary cases, every tangent vector t falls into one of  the 
three classes 5 ++, 5 +-, 5 - - ;  the superscripts give the signs of the eigenvalues 
of the normal form of  t. These are future timelike, spacelike, and past 
timelike cones. The boundary cases are the future null cone 5 +~ the past 
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null cone 5 ~ and the origin 5o; the superscripts give the two diagonal 
elements (+1, 0, or - 1 )  of  the Sylvester normal form of t in nonincreasing 
order. 

Derivative. We use the familiar invariant differential operator 

a = (O~B):= (Olot B~) 

acting on scalar functions ~(t) on 52. 

14. The chronometric form. Define the chronometric (quadratic) form 
on 52 as the N-ary norm 8 extended to 52, applying the polyform construc- 
tion of paragraph 10 to the bilinear form b = 8, the linear space L =-E 2, and 
52: 

Iltl[2-- 2 det(t) = 8abtat b, gab :=  EABE,~[3 

The space 52 is provided with the quadratic form I[ - . .  [12- The space 52 has 
one timelike dimension. This is seen when the norm is diagonalized by 
means of the coordinates t, x, y, z of Cartan, 

[ t+z x-iYl/2a/2 
t=Lx+iy t -z . ]  

Iltl[2 = 2 det(t) = t 2 - x  2 _ y 2  _ 2.2 

15. Stage iii. The spin manifold. Assume that world is a binary spin 
manifold or 62; that is, is locally isomorphic to the binary space $2 of stage 
ii. We mean by this that at each point there exists a preferred coordinate 
system, called normal, where to lowest differential order the concepts and 
theories of 52 are valid. (This strict form of equivalence principle eliminates 
torsion.) The spin manifold therefore has the following familiar furniture 
at each point p: 

1. A local spinor space y2(p). 
2. A local tangent space d| isomorphic to 52, and an isomorphism 

or, the spin map, inducing: 
3. A real, symmetric quadratic form gab(p)dtadt b, with coefficients 

gab = 8,b in a normal coordinate system, inducing a local norm 
I1... It, for polyspinors. 

4. A covariant derivative D = (Da) generalizing the differential operator 
0; a 2-spinor connection Fanc(p) reducing to 0 at p in a normal 
coordinate system at p; and spinor c u r v a t u r e  R anca (p). The spinor 
connection and curvature induce the vector connection Fabc, cur- 
vature Rabcd, and Ricci tensor Rab := RCacb in a routine way. 
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16. Stage iv. Dynamics. Possible dynamical action density terms for 
binary gravity include the Hilbert action density R~/g, with R := Rabg ab and 
g := --det(gab); the cosmological term x/g; the action density 

L2 := IIRABca []2~/gg 

suggested by gauge theory; and the determinantal action density of Einstein 
and Eddington 

Lr := det(Rab) 1/2 

which is a function of the connection Fabc alone, not involving the funda- 
mental form gab at all. Actions for quanta moving in a manifold will be 
treated later. 

3. TERNARY SPIN MANIFOLDS 

17. Implementing the spinor strategy. Now we replace all 2's in these 
familiar postulates (having set them in boldface to make them easy to find) 
by 3's (and 4's by 9's), interpreting all resulting new time space coordinates 
as internal space dimensions. 

The value of N (first 2, now 3) is the eigenvalue of the grade F on the 
eigenvector U, the plenum, of the Grassmann algebra over the space of 
spinors. The mathematical identity of N with a quantum occupation number 
for fermions leads us to conjecture that it indeed arises from such a quantity 
at a deeper, presently uncharted quantum level, and is a dynamical variable, 
not a constant of nature. We therefore carry out the extension from N = 2 
to 3 in a way that can be extended to arbitrary N. 

18. Stage i. Spinor space. First we replace E 2 by ~3, the space of ternary 
spinors, the three-dimensional complex linear space. The fundamental group 
of ternary spinors is SL(3,  C). The space E3 supports the natural trilinear 
form 8 defined by 

Here it multiplies the plenum U = U 3 of  the Grassmann algebra {~} .  This 
form, with its analogously defined dual, extends to all polytensors over F~ 3 
as in paragraph 10, and induces a trilinear norm [[ T[[3 for any such tensor: 

HT[h:= ~(T, T, T) 

When SL(3, C) is reduced to SL(2, C), a ternary spinor reduces to a 
superposition o f  a binary spinor and a binary scalar: ~3 =E2+~1.  The ~2 
is identified with a subspace of ~3 called external  We write 3-spinor 
components as ~b a (A = 1, 2, 3) and 3-spinors themselves as one-column 
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matrices or as 0 = (0  A) = co1(0 ~, 02, 03) �9 The one-spinor basis consists of  
the special spinor symbols 

= 1' (read "up") ,  = $ (read "down") ,  

for two basic external spinors and one basic internal spinor. The ternary 
spinor frame is said to be adapted (to binary spin or time space) when the 
spinor component  0 3 is 0 for external spinors. This is the internal spin 
component.  The null coordinate t 33 = t i is called the internal null coordinate. 
In  an adapted spinor frame the internal null vector 

has components 

o = e, = (o AA) = (o" ) :=  ->-> r 

! ]  = --) (read "in")  

[00!] 
0 0 

0 0 

19. Stage  ii. The tangent  t ime space.  The ternary space 53C ~3(~E3C 
consists of  3 x 3 complex self-adjoint matrices 

t = (t  aa)  = t A 

and has nine complex dimensions. The differential operator 

o = ( 0 , . ) : =  (o/at "~) 
acts on scalar functions q~(t) on 53. 

It follows that under transformations A~ SL(3, C), 3-spinors 0 and 
9-vectors t t ransform according to 

0 '  = A0, t' = AtA H 

53 imbeds both the external binary space 52 with its external coordinates 
x ~  3= t ,x ,y ,  z and an internal linear space 15 of five spacelike 
dimensions, with internal coordinates x 4, . . . ,  xS= a, b, c, d, e. We identify 
the matrices of  52 with the upper  left 2 x 2 corner of  the 3 x 3 matrices of  
53 in an adapted frame, and I s with the border  of  this submatrix. The 
ternary tangent space 53 is provided with the fundamental  form Iltl13 = det(t). 
Its future timelike vectors 5 ++§ are the positive-definite Hermitian t, a 
convex invariant cone in 53. 

Cones. Every ternary vector t, except for boundary cases, falls into one 
of the four disjoint nine-dimensional classes 5 +++ , 5 ++-, 5 §  , 5 - - -  defined 
by the signs of  the diagonal elements of  the Sylvester normal form of  t. We 
call these classes future timelike, future spacelike, past spacelike, and past 
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timelike. The boundary cases are represented by writing O's in place of  any 
of the • signs in these symbols, indicating the presence of a diagonal element 
0 in the normal form. Since the order of the superscripts is immaterial, we 
arrange them in nondecreasing order. There are therefore three disjoint 
lower dimensional null cones 5 ++~ ~+0-, and N ~ called future, present, 
and past. In addition there are now two invariant disjoint, still lower 
dimensional cones ~+oo and ~oo-, the future and past doubly null cones. 
Finally, there is the one-point triply null cone, the origin ~ooo, for a total 
of ten invariant cones in the ternary time space. (In the N-ary case there 
are ( N  + 2) !/[3 ! (N - 1) !] invariant light cones of all dimensions.) 

20. Causality. Important: The causal structure of the binary tangent 
space is automatically preserved in the transition from binary to ternary, 
in that there is only one timelike dimension among the N 2, and past and 
future are connected neither topologically nor by a symmetry transformation 
in A 2. Indeed, the timelike future cone S +++ is connected, and its boundary 
is the union of the eight-dimensional future null cone 5 ++~ the future 
doubly null cone S +~176 and the origin 5 ~176176 Any curve joining a timelike 
future t to - t  must cut this boundary. As for symmetry, each of the four 
nine-dimensional cones is invariant under A2. 

Riemannian hyperspaces need special assumptions to maintain causal- 
ity, just as a special assumption was necessary to provide it in the first place. 
Spin manifolds are naturally causal in every dimension. 

21. The chronometric form. The fundamental symmetric chronometric 
form 6~t3 ~ of  the nine-dimensional ternary space ~3 iS not quadratic like 
that of the binary spinor time space, but cubic: 

HtN3 =~3 ! det(t) = 6~t3vt~tt~t v, 

The coordinatization 

8ab c := e AnreABt . / 3  ! 

[t§ el a - ib 1 
t =  x + iy t -  z c id 

a + i b  c + i d  

of the ternary Hermitian matrices by the nine coordinates t, x, y, z, a, b, c, 
d, e is best adapted to the ordinary t, x, y, z time space. This e := t i is a 
null coordinate. The binary identity t =tr2(t)/2,  however, suggests that 
another ternary coordinatization with t = tr3(t)/3, such as 

t + z + e  x - i y  a - i b ]  

t =  x + i y  t - z + e  c - i d  i 
a + i b  c + i d  t - 2 e J  
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will be more useful when the external time space does not break the 
symmetry. This e is not a null coordinate. 

Proper time. The ternary proper time "r of a future timelike t is defined 
by 

: Ht[ll/3 
A future  timelike curve is one whose tangent dt lies in ~+++. The proper 
time of such a curve is given by 

The ternary determinantal form det(t) vanishes for ordinary (binary) time 
space directions. 

Orthogonality and duality. In binary geometry, orthogonality is a dyadic 
relation s_l_t or .l.(s, t); in the ternary geometry, it is a triadic one, defined by 

.I.(s, t, u):= 8 ~ s ~ t ~ u  ~ = 0 

In binary geometry, contracting a raised index with the fundamental form 
generates one lower index; in the ternary, two. For any vector t =  (t ~) we 
define a dual vector t D= (t~), generalizing the binary concept, with 

t,~ := ,5~t~t ~ 

Then 

t ~  t :=  t ~ t  ~ = [It[13 

The dualization process t D for vectors induces one for arbitrary tensors in 
a unique natural way, maintaining this relation between dual and norm. 
For example, O D is a second-order differential operator. The dual form 
8D= (8 ~bc) has the property 

2~5~u~u~u~ = det(u) 

where u~ = UAA is any covector (dual vector). The ternary norm [I --.  [13, like 
the binary one, is extended to arbitrary tensors T . . .  ; but now it is a 
contraction of a product of  three T. . . ' s  with as many ~ v  and 8~av as 
required for a scalar. 

In variational calculations it is useful to write the variation of I[tl[3 due 
to a variation 8t of t in the form 

~[Itll3 = 3t D" ~t 

The vector formed from any two external covectors by contracting them 
with the ternary fundamental form must be internal, and parallel to the 
internal null vector; it is easiest to see this in a normal frame. The four- 
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dimensional subspace ~2 C ~3 thus defines a unique internal direction in 
the nine-dimensional ternary imbedding space 53. 

This cannot happen in a quadratic geometry of the same dimension, 
for there the subgroup that fixes a four-dimensional linear subspace fixes 
no direction. Such deviations of  ternary geometry from binary intuition 
must be expected because the ternary group SL(3, C) has so many fewer 
parameters than the group SO(9, R) of  a quadratic form (16 versus 36). 

22. Stage iii. The manifold. The world is now postulated to be a ternary 
spin manifold ~3- It therefore possesses at each point p: 

1. A local spinor space ]~3(p). 
2. A local tangent space d ~ 3 ( p )  isomorphic to $3 and an isomorphism 

o-, the spin map, inducing: 
3. A real symmetric cubic form gabc(p)dtadtbdt c, with coefficients gabc = 

~abc in a normal coordinate system, inducing a local norm [I..-lip 
for polyspinors. Since the potentials can be transformed to the 
constant determinantal form ~ by an element of the 81-parameter 
group GL(9, R), and the transformation of vectors leaving this form 
invariant include the 16-parameter subgroup A2, the number  of  
independent potentials among the 165 is at most 81 - 1 6  = 65. There 
are at least 100 relations. 

4. Acovar iant  derivative D = (D, )  generalizing the differential operator 
O; a 3-spinor connection FABc(p) reducing to 0 at p in a normal 
coordinate system at p; and spinor curvature RABca (p). The spinor 
connection and curvature induce the vector connection F~bc, cur- 
vature RObed, and Ricci tensor R~b := RC~b in a routine way. 

The manifold ~3 need not be homeomorphic  to a linear space nor a 
topological product  of  internal and external spaces (like 53), and if it is 
such a product,  the internal space need not be topologically trivial. 

Since ten g's  are ordinary external gravitational potentials, 65 - 10 -- 55 
are new. They have binary spins 0, 1, 2, and 3, since they have 0, 1, 2, or 
3 external indices. 

The nature of  the potentials is the main difference in form between the 
spin theory and the Riemannian one: The Riemannian theory adheres to 
the quadratic chronometric form, adding 45 - 10 = 35 new potentials to the 
ordinary gravitational potentials in going from four to nine time space 
dimensions, with spins 0 and 1 only. Indeed, for a given dimension the 
vector connection Fabc and curvature R~bc8 have the same symbol and 
transformation law in a spin manifold as in a Riemannian one. 

23. Reduction from cubic to quadratic chronometric. The nine- 
dimensional world splits into external and internal differently in classical 
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and quantum theories. In classical theories, it is not ~.nappropriate to think 
of the binary world as a submanifold of  the ternary one, as if its particles 
were localized at a --- b = c -- d = e = 0. In quantum theories, such localiz- 
ation would violate uncertainty relations, but a constraint may limit the 
internal momentum components if these are conserved: p~ = . . . .  p~ = 0. 
Then the binary external world is that of  quanta totally unlocalized in 
internal space. 

As 3-spinors approach 2-spinors, 03-->0, the corresponding ternary 
vectors t approach binary vectors to: 

t = t o +  e 

where to is an external vector and e is an internal vector, with e->O. The 
determinantal relation 

t+zxi'!lo p x i, x + iy t -  z = t2 x2 y2 22 = t + z 
0 x + i y  t - z  

implies that 

Iltoil2 = IIto+ oil3 
where o is the internal null vector. Expanding this ternary determinant 
shows that for any external vector dto a, 

gabdtoa dto b = 3 gob~dtoa dtob O c 

Thus, the usual binary quadratic chronometric is a component  of  the ternary 
cubic chronometric along an internal null direction. 

24. Dual potentials. The binary algebraic relation between the gravita- 
tional potentials gob and the dual potentials gab is 

gabg bC = 6 ~ 

One ternary correspondent to this binary relation is 

gabeg bed = 4 6a d 

Therefore when we raise a ternary vector index to a pair and then lower 
the pair, we get back the original tensor with a factor of  1/4. 

In any normal coordinates in a ternary manifold (where gabc = '~bc) 
the relation gabC = 8~bc also holds. This linkage between ternary form and 
co-form corresponds exactly to the binary fact that in any frame where the 
binary form gab : t~ab, the dual form gab  = t~ab; this serves to define the dual 
potentials in terms of the potentials as uniquely as the algebraic relations do. 
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Independent variables. In Riemannian geometry it is assumed that the 
binary fundamental form is covariantly constant with respect to the vector 
connection: Dagbc = 0. The 40 derivatives of the ten gravitational potentials 
then determine the 40 components of the symmetric part of  the vector 
connection, according to the Christoftel relations, and can themselves still 
take on arbitrary initial values. In the ternary case, however, there are 9 • 45 
connection components, but some 9 x 65 derivatives of the 65 potentials. 
Covariant constancy of the ternary cubic fundamental form would not only 
determine the relevant connection components, but would also impose up 
to 9 • 20 nontrivial relations among the derivatives of the ternary potentials; 
these derivatives could not then take on arbitrary initial values. It seems 
unlikely, therefore, that the ternary potentials are covariantly constant in 
general. The ternary gauge field Fabc and potential field gabc are probably 
independently variable, as Einstein prefers in the binary case ("Palatini 
device"). 

25. Stage iv. Dynamics. The Hilbert action R does not generalize simply 
from binary to ternary spin, though the binary R may appear as one term 
among others in the reduction of a ternary action to binary time space. The 
nearest ternary kin to the Hilbert action with cosmological term is 

A = (RabRcdRe fgabcg  aef + A)g 1/3 

The ternary generalization A3 of the binary quadratic action A2 is the ternary 
cubic action 

A3 := II R~ 113 

The ternary determinantal action is even closer in form to its binary ancestor: 

Ar := det(R,b) 

When we do not constrain the potentials to be covariantly constant, the 
total action density may also include a term 

ag := IlO~gbca 113 

trilinear in the potential gradients. Ag is analogous to the (D~7) 2 term of 
quaternion quantum field theory and the Higgs term of electroweak 
unification theory. Like them, Ag reduces the symmetry of the theory and 
imparts mass to some otherwise massless modes of the gauge field. In the 
present context, this symmetry-breaking is relevant to the problem of 
dimensional reduction. The consequences of these actions are under study. 

While the invariant actions we are considering are classical, we take a 
nonclassical view of them. The classical view, represented by Einstein and 
Eddington, is that there exist fundamental fields obeying kinematical and 
dynamical laws so beautiful that they could credibly be the Law of Nature, 
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the blueprint followed in the creation of the universe. Presumably no 
fundamental  fields exist; and the kinematical and dynamical descriptions 
usually called laws are phenomenological,  not fundamental,  and current 
inventories of  an ongoing process, not the original blueprints for a primeval 
one. This implies that symmetries of  these actions are not exact and absolute, 
but conditional. 

26. Ternary wave equations. We begin with fields in the fiat ternary 
space 53. These have no immediate physical application, since the present 
world has such strong internal curvature, but all the differential operators 
that appear  have meaning in the tangent space to a 63. 

Trine-Gordon equation. The unique scalar wave equation of least 
differential order, analogous to the binary d 'Alembert  equation, is 

det(0)r  = 0 

for a real or complex field ~p on dT3. This has plane wave solutions 

~(t) = ~(0) exp(- ico �9 t) 

where o~ = (waB) is a constant wavevector belonging to the dual space 53 D 
and obeying the ternary dispersion relation 

det(ea) = 0 

This theory reproduces the binary dispersion relation, and hence, effectively, 
the d 'Alembert  wave equation of ordinary special relativity, when the 
internal component  of  co is parallel to the internal null covector and 0)3~ # 0. 

The next simplest equation, the trine-Gordon equation, has a mass term: 

[det(0) - iM3]~(t) = 0 

The dispersion relation for its plane waves is 

det(~o) = M 3 

This is the relation between mass and energy of ternary relativity. 

Trino. The trino, the ternary Weyl neutrino, obeys 

8 ~(t) = 0 

where v ( t ) =  (vA(t)) is a ternary spinor amplitude depending on the time 
space variable t. Since det(0) = 8 D �9 0, this spinor equation implies that the 
tr ine-Gordon wave equation holds for each component  of  9. 

Trirac equation. To introduce a mass term into the massless equation, 
we equate OAR~ B to a multiple of another spinor ~, which must therefore 



Hyperspin Manifolds 457 

have the index structure IXA: 

O r = M I X  

To close the system, we apply a differential operator to IX and equate the 
result to a multiple of  v. The differential operator must therefore have the 
index structure d A~. The invariant differential operator of lowest order with 
this structure is O D. The trirac equation is therefore 

0 v = Mix, oDix = i M  2 v 

The mass squared, M 2, is necessary on dimensional grounds; in the ternary 
theory O D is a second-order differential operator. Only in the binary theory 
do these two equations combine into one of the first-order Dirac form 
(~/- 0 + M)O = 0. In the N-ary theory, the equation for two spinors mixes 
differential orders 1 and N - 1 .  

The coefficients of this massive spinor wave equation have been chosen 
so that the components of  ix and v obey the trine-Gordon wave equation 
for mass M. 

A trirac equation closer in spirit to the Dirac would have the form 

('yaoa - M ) ~ = 0  

with coefficients ya obeying 

(ya0a)3 = det(O) 

In the binary case it is well known that the corresponding condition 

(ya0a) 2 = det(a) 

with a 2 x 2 determinant leads to a finite-dimensional algebra of y matrices, 
the Dirac Clifford algebra. We do not expect this for N > 2. 

M i n i m a l  coupling,. To generalize these equations from the flat space $3 
to a ternary manifold 63, and at the same time provide a minimal 
interaction with the gauge field, we replace the ordinary by the covariant 
spinor derivative: 

O ~ D  

27. Symmetry group and multiplet structure. The subgroup of  SL(3, C) 
of  all elements that fix every external spinor, and therefore also fix every 
point of  dT2, is the four-parameter internal group Gi of matrices g of the form [10 ] 

0 1 

0 0 



458 Finkelstein, Finkelstein, and H o l m  

Setting qJ = a'~+fl$, we may write this matrix as 

g = 1 + ~ ( ~ )  + ( ~ D )  =: g(4Q 

Since g(~)g(~b')= g(tp + ~b'), the multiplicative group Gi is product of  the 
additive group E 2 of the 2-spinors ~b, isomorphic to the Abelian group •4. 

Any binary tangent vector can be diagonalized by a binary transforma- 
tion. It is easy to show that any ternary tangent vector may be diagonalized 
by a suitable product of  binary transformations acting on the external space 
only and internal transformations. The norm of a diagonal tangent vector 
diag(t+, t_, t~) is 

Iltll =6t+t_ti 

Similarly for wave vectors to; diagonalization puts the external direction of 
propagation along the z axis and the internal direction of propagat ion along 
the internal null direction. The norm 

II ~~ I[ = 6o9+o9_to, = 6(o9 2 - -  k2)k~ 

is the Minkowski norm of the external wave vector multiplied by the internal 
wave number. 

In Riemannian theories, the time and space wave numbers of  the modes 
are thought to combine as a quadratic sum with appropriate signs to produce 
the square of  the total rest mass. In N-ary physics, the modes are neither 
timelike nor spacelike, but null, and combine multiplicatively. The quadratic 
addition recipe appears as an artifact of  four dimensions, where o9+o9_ = 

2 2 
OgO - -  O93 �9 

The descending mass spectrum. In consequence, we do not get the 
correspondence limit (in this flat case, at any rate) by setting the internal 
wave number  equal to zero. That is not even a possible mode unless the 
parameter  M is zero, too, and then it produces a continuous spectrum of 
all masses. Instead, we must single out a definite internal periodicity k~ or 
a discrete spectrum of ks. Then the mass spectrum in flat, ternary time space 
is 

(09 2 -  k 2) = M3/ki 
This multiplicative factor in the mass spectrum is pleasantly suggestive of  
the hierarchy of particles, but we also see here what might be the first sign 
of a fatal defect inherent in the theory: 

I f  the spectrum of internal wave numbers is unbounded,  there is a descending 
mass spectrum with 0 as a point of accumulation. 

The theory will survive this apparent  discord with experience only if high 
internal curvature changes the result or its experimental meaning. 
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Unitary symmetry. The idea behind hypervector, hyperspin, and para- 
spin theories alike is to account for an empirical group structure of  particle 
interactions by introducing an internal substratum of  which the empirical 
group G is a symmetry. Ternary geometry, however, does not of itself 
nominate the group A2 of  ternary spinors as a candidate for a particle 
symmetry group, since A2 is strongly broken by the difference in curvature 
between the internal and external spaces. Color SU3, for example, relates 
three external spinors. The group A2 relates two external spinors 1' and $ 
to the internal spinor -*, which is a scalar under A~. 

Since the three creation operators for the three modes ~', 4, and 
presumably anticommute, this triplet apparently violates the connection 
between spin and statistics. The first two modes, however, propagate in 
external directions, and the third propagates in internal directions and has 
ultrahigh energy. Therefore, no observable violation of the spin-statistics 
connection should occur. 

Only at ultrahigh energies, which might wash out the initial time space 
curvature, could A2 manifest itself as a symmetry of ternary dynamics; then 
the concept of  binary spin disappears with the distinction between internal 
and external, and ternary spin takes its place. Otherwise, A2 appears only 
as a group that can act on the fundamental variables, not as a symmetry 
of the Hamiltonian. Again no observable violation of spin-statistics is to 
be expected. 

The idea of Kaluza-Klein-De Witt theories, transcribed to ternary 
geometry, is that the world may not be an 6 4 with gauge fields, but may 
be a product  

~9 .~_ ~4(~) 15 

of  an external ~4 of comparatively small curvature and a compact five- 
dimensional internal space 15 of high curvature, with an action of  the 
symmetry group G on ~9 that fixes each point of ~4 and maps 15 into 
itself. 15 may,  for example, be homeomorphic to the group manifold G 
itself, o r  a coset space thereof, or a product of these group spaces with a 
" radia l"  space. 

One promising candidate for an internal space supporting SU3 is 
15--- S ~', the five-dimensional sphere of unit vectors in H a, the three- 
dimensional complex Hilbert space, with G acting on 15 as unitary 3 x 3 
complex matrices act on the unit sphere $ 5 c  H a. This is not the natural 
action of  A 1 o n  this $5; there are other five-dimensional compact spaces 
that 15 might turn out to be a priori; and there are other invariance groups 
that might belong to 15 even when 15 turns out to be S 5, such as S05. If 
there is any natural theory of  SU3 symmetry within the ternary geometry, 
It therefore rests on solving the dynamical equations for the chronometric 
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form to obtain a particular solution with a suitable topology (such as 
d T 2 |  5) and with SU3 symmetry. It seems to have little or nothing to do 
with the mere presence of SU3 in A2. 

While the group AN-1 of the N-ary tangent space $~ is not an internal 
symmetry group, the internal group Gi of S n might be one. It may be 
possible to construct standard manifolds having the internal group as an 
internal symmetry group; for example, the product of a fiat, external space 
invariant under Gi and an internal space that is homogeneous under Gi. It 
is therefore useful to examine manifolds whose internal group includes 
SU3. The internal group of the ternary geometry, we have seen in this 
paragraph, is Abelian and six-dimensional; it does not include SU3. The  
first N-ary geometry whose internal group includes SU3 is evidently the 
quintary, founded on 5-spinors and the group SL(5,  C); its internal group 
includes SL(3 ,  C) as well as SU3. 

[Quantum set theory already suggests that the kets of the world be 
assembled out of products of five Grassmann elements representing elemen- 
tary quantum simplices of four dimensions. The group of such a pentad is 
GL(5,  C), and therefore the continuum approximation to such a simplicial 
complex might have this as its local group.] 

4. DISCUSSION 

28. Main results. The spinor imbedding strategy generates a less 
arbitrary revision of time space geometry than the Riemannian. The N-ary 
hyperspace, the imbedding time space, can have only the quadratic 
dimensions n = 1, 4, 9, 16 , . . .  resulting from spinors of N components with 
N =  1, 2, 3, 4 , . . . .  This excludes Kaluza's one-dimensional internal space, 
among with many others, since with four external coordinates the minimum 
number of  internal coordinates is 9 - 4 = 5 .  The N 2 - 4  internal space 
dimensions all prove to be necessarily spacelike, maintaining the strict 
causal split between past and future. Most radical revision of all, the 
chronological structure of the hyperspin manifold of dimension n = N 2 is 
not given by a symmetric n-ary quadratic form, as has almost always been 
assumed. The degree N of  the chronometric form uniquely determines the 
dimensionality n of the total time space by the quadratic relation n = N 2. 
The chronometric structure is defined by a symmetric n-ary N-ic form (what 
Sylvester calls a quantic) 

d,r N = gab...zdX a . �9 . dx z 

with N n-valued indices A , . . . ,  Z = 1 , . . . ,  n, which is a quadratic form only 
for N = 2 (not the most general n-ary N-ic quantic, however, but one having 
deterrninantal normal form). 
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In hyperspin geometry it is no longer possible to make a scalar from 
two spinors. In the simplest such theory, the ternary, we need at least three 
spinors, or a spinor and a dual spinor, to make a scalar; just as we need 
three colored quarks or a quark and antiquark to make a colorless quantum. 
Nor  can a scalar be made from two vectors; it takes three vectors, or a 
vector and a covector, to make a scalar. The bilinear inner product of  two 
ordinary vectors is not a scalar, but a multiple of  a unique null codirection, 
the internal null covector of  the ternary space. 

Wave equations andparity violation. The ternary Pauli matrices are 3 • 3 
and there are nine of them. The dispersion relation of the trino is det(to) = 0. 

The ternary scalar wave equation, the t r ine-Gordon equation, is of  the 
third differential order instead of the second. 

The massive spinor equation, the trirac equation, sprouts a surprising 
asymmetry. Instead of being uniformly of the first differential order like the 
Dirac equation, the trirac equation consists of  a first-order equation for 
(say) a left-handed spinor and a second-order equation for a right-handed 
spinor. In the N-ary geometry the orders are 1 and N -  1. It is only in the 
binary case N = 2 that N - 1 = 1 and the massive spinor equation treats left- 
and right-handed spinors symmetrically. In general one of the binary spinor 
symmetries that interchanges right- and left-handed spinors disappears. 

Nevertheless, according to the hyperspin correspondence principle, we 
expect the trirac equation to go over into the Dirac equation, with perfect 
left-right symmetry, as the internal time scale e ~ 0. Therefore, for small, 
nonzero e there should be small parity violations. These and other applica- 
tions of  N-ary  manifolds will be taken up in a subsequent paper. 

It is impossible not to wonder at least briefly whether the case N = 3 
might have special connection to quark color or flavor, since A2 ~ SU3. We 
have considered and discounted this connection in paragraph 27. A suitable 
ternary spin manifold 63 may still have an internal SU3 symmetry not 
connected to the group SL(3, C) of  the geometry, but we suggest 65  for a 
more promising hyperspin theory of SU3. 

29. Implications. A nonquadratic chronometric has been considered 
before, for example, in Finsler spaces. This previously seemed to be a 
distortion of  the Riemann theory that was motivated mainly by a desire for 
the utmost generality. In the N-ary spin manifolds, however, we have a 
quite special line of  higher dimensional geometries that are simpler and 
more specialized to the needs of  physics than the older line of  Riemannian 
geometries, and beautiful in their economy of means. The possibility that 
hyperspace has an N-ic rather than a quadratic chronometric form must 
be considered. 
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30. Limitations. Nevertheless, it is probable that hyperspin geometries, 
too, are smoothed classical continuum approximations to some still 
unknown quantum theory of discrete elementary processes, and will be 
unable to describe cosmogony and the deep interior of physical particles 
except as singularities. Further, if the internal perimeter of the world is of  
the order of  the Planck length, a classical theory of time space such as the 
present one has value only as a general indication of what might happen, 
and we must return to the search for a quantum theory of time space. 

31. Generalizations. There are as many generalizations of the present 
theory as there are groups of linear transformations containing A1 = C1 = D1. 
In particular, since we have now used Cartan's A's, B's and D's, one might 
explore a line of spinor-based manifolds using the C's, giving hyperspinors 
an invariant symplectic form. 

The four-dimensional Minkowskian manifold of classical gravity theory 
seems now like a kind of Time's Square, where three main lines meet. Of 
these the B/D line is the oldest and best explored one. In this paper we 
discover (we think) the A train and the C train, and take the A train to 
the next station, the ternary spin manifold. 

We choose the A line for our first exploration not so much for its 
elegance as for its connection to quantum set theory, which describes the 
world (or the system under study) by kets in a Grassmann algebra (with 
additional hierarchic structure). The simplest representation of the Lorentz 
group in this algebra is A 1 acting as 2 x 2 linear transformations of a pair 
of Grassmann elements; but there is no permanent wall separating two 
elements from the rest of the infinite-dimensional Grassmann algebra of 
quantum set theory, and as other elements join them they carry us naturally 
along the sequence of groups A2, A3, . . .  of  the A line. This is the origin of 
the present work. There is no equally simple connection to either the B~ D 
line or the C line of manifolds. 

Nevertheless, the C train, too, is worth an inspection. Its spinor 
symplectic form endows its time space vectors with a symmetric quadratic 
form like that on the B/D line, and it has in addition an N-ic form like 
that on the A line. Spin manifolds on this line therefore admit a first-order 
Dirac equation. The signature of the quadratic form is not of  the causal 
kind, but perhaps internal time loops are not disastrous as long as the 
external space is causal. 

32. The missing quantum foundations. The classic binary constructions 
of stage ii of  paragraphs 13 and 14 that we have generalized here have 
themselves long cried out for an explanation--in vain. 

(The matrix t of  stage ii resembles a statistical matrix strongly. While 
the fundamental spinor components may be quantum amplitudes, the matrix 
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t is a classical coordinate, measured in a single experiment. Is a timelike 
future vector a statistical description of an assembly of spinorial quantum 
entities constituting the chronometric manifold? What is the underlying 
quantum theory? What does the determinantal norm of the time space 
vector in stage ii say about the underlying quantum entities?) 

In this paper we have briefly turned away from the levels beneath time 
space and toward those above. 

33. Duality and triality. Dualities pervade theoretical physics. Some 
physical dualities have already been traced to the quantum twoness of our 
spinors (the covalent bond, for example). We see in this work that metrical 
dualities like the bilinearity of our free Lagrangians, the dyadic relation of 
orthogonality, and the duality relation between vectors, could also stem 
from this root. If ternary hyperspin exists, as we propose, then each of these 
dualities is but a part of a deeper triality, one of whose elements lies in 
internal space and has been unnoticed until now. 
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